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Abstract

We prove a lower bound on the spacing of zeros of paraorthogonal polynomials on the unit circle,
based on continuity of the underlying measure as measured by Hausdorff dimensions. We complement
this with the analog of the result from Breuer (2011) showing that clock spacing holds even for certain
singular continuous measures.
© 2020 Elsevier Inc. All rights reserved.

1. Introduction

This paper is concerned with the spacing of zeros of paraorthogonal polynomials on the
unit circle (POPUC), and in particular in the connection between these spacings and continuity
properties of the underlying measure. Its purpose is twofold. The first is to describe a very
general observation connecting measure continuity to local zero spacing (which, to the best
of our knowledge, is new in the real line case as well). The observation is that the degree of
continuity of the underlying measure, in terms of comparison with «-dimensional Hausdorff
measure, implies a lower bound on the local spacing of the zeros. The second aim of this paper
is to present the POPUC analog of an example on the real line [2,3] that shows that singular
measures may still have strong asymptotic repulsion, implying that upper bounds coming from
singularity of the measure are probably more subtle.
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To set the stage, let © be a probability measure supported on an infinite subset of 9D —
the unit circle. We denote the (normalized) orthogonal polynomials associated with p by the
sequence {¢,},-, which is uniquely defined by the fact that ¢, is a polynomial of degree n
with a positive leading coefficient and the orthogonality relation

/ §0,1§0_mdﬂ = Sum.-
oD

The sequence {g,}.2, is well known to satisfy the Szeg6 recurrence (see, e.g., [26])

Pnt1(2) = p, " (204(2) — () (1.1)

where ¢/(z) = Z"¢,(1/2), p» = (1 — |an|2)]/2, and the sequence {&,}.c,, known as the

sequence of Verblunsky coefficients, is a sequence of complex numbers inside the open unit
disk, which are uniquely determined by the measure .

Given a sequence of orthogonal polynomials on the unit circle (OPUC), {¢,}.2, as above,
and an additional sequence, {8,}oc,, of numbers on the unit circle we may define the
corresponding sequence of paraorthogonal polynomials through

H"(2) = 200-1(2) — Buo199t_,(2). (1.2)

Paraorthogonal polynomials, introduced in [9], have received some attention in recent
years due to their natural appearance in various models both inside and outside the realm
of orthogonal polynomial theory. These areas include random matrix theory [10,11], quadra-
ture [7], electrostatic problems on the circle [22], and the computation of numerical ranges
of multiplication operators [17]. More importantly in the context of the present paper, the
zeros of paraorthogonal polynomials are in a sense, the ‘correct’ analog of zeros of orthogonal
polynomials on the real line (OPRL): while the zeros of ¢, are known to be inside the open
unit disk [26], the zeros of H,Eﬂ”*') are known to lie on 9D [26, Section 2.2]. In fact, they
are eigenvalues of a unitary truncation of the CMV matrix associated with the Verblunsky
coefficients {a,}o, in much the same way as the zeros of the n’th OPRL are the eigenvalues
of a self-adjoint truncation of a Jacobi matrix (see [26, Sections 2.2 and 8.2] for details). Other
relevant references include [4,5,18,21,23,24,28]. Questions about the asymptotic distribution of
these zeros on 0D are thus natural and have been studied in various contexts which we discuss
in greater detail below. In this paper we focus on the connection between the continuity of
and the local spacing of these zeros.

As a final preliminary, we remind the reader of the definition of o-dimensional Hausdorff
measure, 1. Given 0 < o < 1 and a nonempty set S C 9D

[e¢]

) = i, inf D L3
j=

In this definition, {Ij}j‘;l is called a §-cover of § if for each j, I; is an arc of length |/;| < §
and § € U2, 1;. The infimum is taken over all §-covers. It is known [19] that the above limit
exists (being possibly co) for any nonempty S € 0D and that the restriction of 4 to Borel
subsets defines a measure. Note that 4 is the counting measure and /' is the arc-length measure
(=Lebesgue measure on dID). Moreover, for any S € 9D, there exists a unique «(S) € [0, 1]
so that for any o < «(S), h“(S) = oo and for any o > «(S), h*(S) = 0. «(S) is known as the
Hausdorff dimension of S. For more on Hausdorff measures and dimensions see [19].
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In order to present our results we need to label the zeros around a fixed point on the unit
circle. Thus, let ¢© € 3D be fixed and let us label the zeros of H,Eﬂ”") in the following way:

< 0"(0)< 6 <6)(0)<6"(O) < ... (1.4)

Remark. We omit g, _; from the notation for 9;’1)(9) in order to streamline the presentation.
The dependence of 9;")((9) on B,_; below will be clear from the context.

Theorem 1.1. Let i be an infinitely supported probability measure on the unit circle and let
{Bn}2 be a sequence of numbers satisfying |B,| = 1. Then

1. If pgc is the component of wu that is absolutely continuous w.r.t. Lebesgue measure on
oD, then for jLa-almost every z = ¢'© we have
lim sup (6" (0) — 6)(0)) > 0. (1.5)

n—oo

2. Fix y > 1, and let
A={d® oD |timintr (05(6) - 0(6)) < oo}

Then the restricted measure u(A N -) is supported on a set of Hausdorff dimension at
most %

It follows that for any 0 < a < 1, if u gives zero weight to sets of Hausdorff dimension
at most o (in particular, if w is absolutely continuous with respect to h**¢ for some
& > 0), then for j-a.e. O

lim n” (95’”(9) - ei”f(@)) — 00

n—oo

fory:%—l.

Remark. Many examples of absolutely continuous measures exhibit spacing which is known
as local clock behavior (see Definition 1.1). This is a considerably stronger form of repulsion
than that exhibited in (1.5). The bound in (1.5), however, is completely general (nevertheless,
note that [1] conjecture a weak form of clock behavior for p,.-a.e. point for any measure). The
fundamentally new result in Theorem 1.1 is part 2 which, to the best of our knowledge, is the
only existing result tying Hausdorff continuity of a measure to OP zero spacing.

Remark. The analogous result for zeros of orthogonal polynomials on the real line (OPRL)
holds as well. It is in fact an immediate consequence of [13, Theorem 2.2] and [12, Theorem
1.1] and [8, Corollary 4.2]. The analogs of [12, Theorem 1.1] and [8, Corollary 4.2] for the
unit circle appear essentially in [26, Chapter 10]. As for the unit circle analog of [13, Theorem
2.2], a discussion in Section 10 of [13] describes a strategy of proof and a consequence. For
completeness we state and prove the precise analog in Section 2, following which we give the
proof of Theorem 1.1.

Remark. As mentioned above, recent years have seen various works studying zero spacing
for paraorthogonal polynomials. For random Verblunsky coefficients, the works [11,27] show a
transition from Poisson to clock behavior via asymptotic S-ensemble statistics (indeed showing,
in this particular case, a correlation between measure continuity and local repulsion). From a
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slightly different perspective, the papers [7,13,20,21] study the connection between regularity
properties of {a, )2, and these spacings. In particular [13] obtain sufficient conditions ensuring
clock behavior, whereas [7,20] obtain global upper bounds on the spacing depending on the
decay rate of {a,};- . Other works associating properties of u and the zeros of the associated
paraorthogonal polynomials include [5,18,23,24].

A very strong form of local repulsion between the 9;")(9) (already mentioned above) is
known as clock behavior. This is defined as follows:

Definition 1.1. We say there is clock behavior at ¢/® € dD if for every j € Z

n(672(6)-6"(0)) — 2.

While the term ‘clock behavior’ was originally defined and studied in the context of the unit
circle [26] (since in this case the zeros distribute like dials on a clock), it was studied more
extensively in the context of the real line, where it was found to be connected to universality
limits of the Christoffel-Darboux (CD) kernel [16,25]. Explicitly, the Freud—Levin-Lubinsky
Theorem [6,15,25] says that convergence of the rescaled CD kernel to the sine kernel (aka
‘bulk universality’) implies clock behavior at the relevant point. Universality limits have been
extensively studied mainly because of their connection to the phenomenon of universality in
random matrix theory. In particular, bulk universality (and therefore clock) was shown to occur
for generic points in many cases of absolutely continuous measures on R (for a review on some
of the relevant literature on universality see [16]).

In light of the above results and discussion, it is natural to wonder whether singularity of
w implies less regularity of the asymptotic zero spacing. The example in [2] (see [3] for a
continuum Schrodinger operator analog) shows that the situation in the case of R is more
subtle. By considering the Jacobi coefficients associated with p on R, [2] presents a family of
purely singular measures where bulk universality, and therefore clock behavior, holds at every
point of [—2, 2]. Our second main result is the unit circle analog of this example.

Theorem 1.2. There exist purely singular continuous measures on the unit circle such that
for any sequence {B,}52, with |B,| = 1, for any e'® € 9D, and any j € 7,
n (9;’21(@) - 9;")(9)) — o

As in the case of the real line, we construct these examples by considering the associated
Verblunsky coefficients and using the fact that the association of u with the sequence {o, )57,
is bijective [26]. The sequence {c,}5-, that we study is sparse in the sense that the distances
between non-zero «’s rapidly increase to infinity. We show that for a sparse decaying sequence
of Verblunsky coefficients the associated CD kernel has sine kernel asymptotics and deduce
clock behavior. In this we imitate the strategy and technique of [2]. We note, however, that
we introduce a technical simplification that allows us to consider diagonal and non-diagonal
elements of K, simultaneously.

Remark. [29, Theorem 1.4] shows that the measures constructed in [2] are absolutely
continuous with respect to h% for every 0 < o < 1. In a sense, they are as continuous
as possible, while still being singular with respect to Lebesgue measure. Although we could
not find a proof in the literature for the analogous case on the unit circle (i.e. the measures
constructed in Theorem 1.2), because of the similarities between the constructions, we suspect
it may also be true in our case.
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The rest of the paper is structured as follows. In Section 2, following a few preliminaries, we
present the proof of Theorem 1.1. In Section 3 we set the stage for the proof of Theorem 1.2
with a short discussion of the CD kernel and an explicit description of the example to which
the theorem pertains. In Section 4 we prove Theorem 1.2. Appendix contains a statement and
proof of the unit circle analog of the Freud—Levin—Lubinsky Theorem (that we could not find
in the literature).

2. Lower bounds via Hausdorff dimensions

We begin by describing the connection between the zeros of the CD kernel and the zeros of
H,, that will be useful in later sections as well. The Christoffel-Darboux kernel, K,,, associated
with p, is defined by

n—1
Ku(z, w) =) _pu(2)pe(w).
k=0

o0
For a sequence {B,},2,, let {H,y8 "")] be a sequence of paraorthogonal polynomials defined

n=0
in (1.2). Wong [28] proved that for any n, and for any zero of H,Eﬂ n=-1) , 20, there exists a constant,
¢ # 0 so that

H" V() = ¢z — 20)Kn(z, 20) @2.1)

Hence z is also a zero of H, if and only if it is a zero of K, (-, zg). Moreover, it follows that
all the zeros of H,, are simple.
Let z € 0D. We study the following system of difference equations

—1 —
Unt1 = Py (2t — Cpu))

t

2.2)
uh,y = py (—zatty + ul)

where {a,}52, is a sequence in I, and p, = /1 — ot |2 Writing this in matrix form we get

Upt 1 Z —0, \ (Un
= . 2.3
<”l+1) P <_Za" 1 ) <”jl) @3

Denote i, = <M¥), and the nth step matrix S,(z) = ,0,,__]l < c _anl>. Now the
Un —l0p—1 1
equation can be written as
iin = Sn(Z)iin—l' (24)

Moreover, denote the transfer matrix 7,,(z) = S,S,_1--- S1, so we have
i, = T,(2)up. 2.5)

Pick two solutions of (2.5) with orthogonal boundary conditions
©n(2) 1
=T
(¢i) =7 ()
Vn(2) 1 )
=T,
(W) =mo (4



J. Breuer and E. Seelig Journal of Approximation Theory 259 (2020) 105482

so we can write the transfer matrix as

_1 <<pn(z) V(@) ¢al2) — wn(z)) '

T2+ ¥l el - vl

These ¢, are indeed the orthogonal polynomials corresponding to the Verblunsky coeffi-
cients {a,},-,, and o) = @, . Furthermore, v, are also known as the second-kind orthogonal
polynomials. They are actually just orthogonal polynomials with respect to {—a,}oc, and in

this case wT =—yr.

T.(2) (2.6)

Lemma 2.1.  Let {w,}2,, {w}}°%, be two solutions of (2.5) for parameters z,z € 9D
respectively, having the same boundary conditions wo = w'y. Then

n—1 1
W= 0, + (@ = DY o (P (@) — @) W' @7
m=0
and
n—1
R G B OO RHOTAC) R 2:8)
m=0

Proof. We would like to find a convenient form for the matrix
04(z.2) = Ty(2) "' T(@).
Note that
T,(2)7 ' T,(2) = T,-1(2) ' Su(@) ' Su (@) T-1(2)
=T, (I + 8,2 7' Su(@) = 1) T,1(2)
= 0412, )+ T-1() 7 (Su(@) 7' 80 (@) = I) T1(2).

Solving the equation above for the boundary condition Qq(z, z’) = I, we get

0u(z ) =T+ Tu1@ " (Su@ "' Sn@) = I) Tu1(2).

m=1

Multiplying both sides of 7,(z') = T,,(z) Qu(z, Z) by w'o, we arrive at

Wy =ty + YT T 1) (Sn(@) ™ Su(@) = Dby 2.9)

m=1

All that is left is to calculate the summand. First,

Sm(Z)_]Sm(Z/) — Z—lpr;zl ( 1 am—l) ( < _am—l)

0 —1 <

Z7—z(1 0
=1+ 5 (0 O).

Here we used the fact that det S;(z) = z for every k € N. It also implies that det7,,_(z) =
det (S,,_1(z) - - S1(2)) = z"~!, so we conclude

7z (gof,,_l(z)wn@ -0V (2) 0)

22" \o! (@¥l@ —el@y! @ 0
6

T T-1(2) " (S (@) ' Su() = 1) =
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Plugging this back into (2.9), we find that

L "1 ol @) —en@VY, () O
/n = Wy + ( - ) o m—
W = iy + (& — 2 Zsz (go:[,_l(z)lﬂ;r(z)—wi(Z)lﬂ,L_l(Z) o) !

T . + 0
— wn + (Z _ Z)Z 1 <¢’m(1)¢n(2) ¢n(Z)Wm(Z) ) 'ij' 0

=22 \ gl vl () — el @uh(z) 0

We also require another Lemma.

Lemma 2.2. Let {¢,}2, be a sequence of orthogonal polynomials on the unit circle and
B € 0D. Let 7/, 7" be two distinct zeros of the paraorthogonal polynomial H, ¥ Then the pair
of vectors

©o(2) @o(z")
1(2) 012"

‘pn—l(z/) %1—1(1”)

are orthogonal to each other in the Euclidean space C".

Proof. As B is fixed, we omit it from the notation for 1P throughout the proof. Let
U : L*(;) — L*(1) be the operator of multiplication by z. Let P, : L?(n) — L%(1) be
the oblique projection operator into span{z™}, _ 0 along span{H,, ©y+1, Pu+2, - - - }. Now define
another operator

U, = P,U| n—1 .

span{z }m =0
As discussed in [4], this is the appropriate way to truncate the unitary operator U in order
to get a unitary operator on a finite-dimensional subspace of LZ(u). This operator acts on
span{z"},_, by

- _ (zfs on)
(Unf)z) =2f(2) H o) H,(2)
Let A be an eigenvalue of U, then there exists an eigenfunction f € span{z’”};’;lo such that
(zf, ¢n)
@ = g @) = 3
¢
(zf, ¢n)
——H,(z)=(z— X
Hoon) () =@-M],

so A is a zero of H,. Moreover, f lies in the one-dimensional space spanned by the function
%, so every eigenvalue is simple. Thus the set of eigenvalues of U, equals the set of zeros
of H,. In particular, 7/, z” are two distinct eigenvalues of U,,.

By (2.1), there exist constants 0 # ¢y, ¢; € C such that
H,(2)

7 =c1Ku(z,2)
H,(z
Z —(Z?/ = C2Kn(za Z//)a
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so K, (z,7), Ku(z,7") are eigenfunctions of U, associated with the distinct eigenvalues z’, 7”
respectively. Therefore

(Ku(z. ). Ku(z.2") 2,y = 0.

”m_:lo, we write the coordinates vector of the

Taking B = {(pm(z)}”m_:lo as a basis for span{z™}
eigenfunctions

®o(z") ®o(z")
[Ku(z,2)]p = : o [Ka(z, 2] = :
Yn-1(2") Yn—1(2")

These vectors in C" are again orthogonal to each other as eigenvectors of [U,]p associated
with distinct eigenvalues 7/, z”. We conclude that also their complex conjugates

@o(2) @o(z")
(pnfl(z/) </)n71(Z//)
are orthogonal to each other. [J
We now use these two lemmas to prove the following unit circle version of [13, Theorem
2.2].
Theorem 2.3. Let z = ¢'® € dD, B € 3D, and let
0" =0")(0) < 0 <6”(O0) = 06" (2.10)

. . n ) . .
be as in (14), ie. 77 = €1 and z are a pair of consecutive zeros of the

paraorthogonal polynomial H,f’s ) around z. Then

n—1 -1
> (anz)nz) 2.11)
k=0

Proof. We imitate the proof of [13, Theorem 2.2]. Let {¢y};2, be the sequence of normalized
OPUC. So

(o @120 {oe@)) oy {oe@D) ey

solve (2.5) for parameters z, 7/, 7” respectively. Thus, by Lemma 2.1,

o ot}

k—1
1
(@) = o)+ (@ =) 5T PRV = @YD) @n(D),
m=0

k—1

o) =p@+E -y
m=0

(0] (V@) — @Y1 (2)) ().

2Zm+l

Define the operator A,(z) : C* — C" by
k—1

1
(Ap(Dv) = ZW (), @V (2) — DV} (2)) -

m=0

8
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Thinking now of ¢.(z), ¢.(), ¢.(z") as vectors in C", i.e.
®o(§)
p.(§) = : , for&=z7,7",
(pn—l(S)
we may write
9.(2) = ¢0.(2) + (2’ — D A(2)9.(2)
9.(2") = 0.(2) + " = DA(D).(2").

Let || - ||, denote the Euclidean norm in C". Without loss of generality, assume ||.(z")||, <
lo.(z)|l,.. Otherwise, switch the roles of 7/, z” in the argument below.
On the one hand,

e = (9., 9.)) = (9.2), 9.)) + (' — 2) (An(@)e.(2), 9.(2)) .
and on the other hand, by Lemma 2.2

0=(0.z"), 0.z") = (0.(2), 9.()) + " — 2D (An(D)0.(2"). ¢.()) .
Subtracting these equations and taking the absolute value, we get
oI5 =< 12" = 2l {An@)e.@), 9.(D)
+ 12" =zl {An(@)e.(2"), .(2) |
< (I2 =zl + 12" = 2l) 14, - gD
4
I, @I~ < 12 — 2zl + 12" = 2.

Because the distance between two points on a circle is smaller than the length of the arc
connecting them, we see that

|2 =zl + 12" —z| < ‘9311) - 9’ + ‘98") - 9‘ = ’9(()") —o"

All that is left is to show that
n—1
14,1 < Y IT@I
k=0
Indeed, we obtain this inequality by estimating the Hilbert—Schmidt norm of A,(z), which is
larger or equal to its operator norm.
== )
2 _ T _ T
1A@IEs = 72D |0} @) — ¥ 2)]

k=1m=0
n—1n—1

1
722 (leh @@l +2]el@u@n @@ + le@ui)])

k=0m=0

IA

Summing over each of the three terms separately, one finds that the first term yields
11T @2 1¥.(2)|1? and the last term yields {]l¢.(2)|I2|¥ (2)]|2. As for the middle term, by
Cauchy—Schwarz, its sum is less than or equal to
1 1
S1e' @Y @lnlle @I @l < 7 (lof @RIV @I + le.@IIv-@I7) -
9
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Therefore,

1
14,@ls = 7 (@I + 1! @1) (Iv-@IE + v/ @1 ).

Note that
n—1

1 1
5 (e @I+ 10!@I2) = 53 (In@P + e}l
k=0
1
Ti(2) <1)

ln—l
= EZ
k=0

n—1
<Y IL@I7
k=0

2

and similarly for [|¥.(2)||2 + |[¥(2)||?, only by using T;(z) <_11> = <:§’5&3) Plugging this
k
back in,
n—1 2
1A fs < (ZnTk@nz) :
k=0
Hence

o -0t}

n—1 -1
> A@I7" = 1A @)5s = (an)nz) ,

k=0

which concludes the proof. [

Proof of Theorem 1.1.
Fix a sequence {B,}52, with |B,| = 1.

1. By [26, Theorem 10.9.4] an essential support for pi, is

n—1
1
Ny = {z € oD |liminf —> |1 Ti(2)* < oo} .
n—oo nk=0

Notice that z = ¢’® € N, if and only if

n—1 -
limsup n (Z||Tk(z>||2> >0,

n— 00 k=0
which implies, by Theorem 2.3, that
limsupn(6"(0) — 6")(6)) > 0.

n—oo

2. By Theorem 2.3, z € A implies

n—1 -1

oy 2

hnn_l)gfn <Z||Tk(1)||) < 00,
k=0

10
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which is equivalent to

n—1
. 1
lim sup — > "I T(2)[1*> > 0.
n—oo NV =0
Now, by (2.6),

1
1T ()1 < i (lpe(2) + Y@ + lox(2) — V(@)

+ 6]+ vl @l +lof@ - vj@I)
< loe@ + 1Y)l
The last step is due to the fact that
Vz e dD i)l = 12 e(1/2)] = I9i ()| (2.12)
and as we noted earlier in this chapter, go,j, 1//,3 are just x-conjugates of first- and

second-kind orthogonal polynomials (up to a sign change). Therefore,

. 1
limsup — (llo.)II; + [1¥-.II;) > 0.
n—oo N

Now, by [26, Theorem 4.3.16] for pu-a.e. z € 0D and for any n > 0, there exists a
constant C,, such that
1
lo.@l. < Cy-n2™,
which implies that
le.2)II2
nv

converges to zero as n goes to infinity, by choosing 1 small enough.
It follows that

. ()11
p _— >
nv

< 2oty

lim su

n—oo

Oa

and we conclude that for § = ﬁ (where y > ¢ > 0)

iminf 12 @l _ i ine cn-snrzen

n—oo || (I} T n—oo
for some constant C, which again converges to zero as n goes to infinity by choosing
n small enough. By the subordinacy theory for OPUC [26, Theorems 10.8.5, 10.8.7],

u(AN-) is supported on a set of Hausdorff dimension at most % = ﬂz/ﬂ. Since ¢ > 0

is arbitrary, w(A N -) is supported on a set of Hausdorff dimension at most % ]

Remark. As remarked in the Introduction, the analogous statement for OPRL holds as well.
The proof follows the same lines. In fact, since all the relevant results already exist it is much
shorter. Part 1 follows immediately by combining [13, Theorem 2.2] with [12, Theorem 1.1].
Part 2 follows immediately from [13, Theorem 2.2] and [8, Corollary 4.2].

3. Sparse Verblunsky coefficients

The following is the main technical tool behind Theorem 1.2.

11
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Theorem 3.1. Let {v;};2, be a sequence of numbers in the open unit disk D such that vp — 0
as £ — oo. Let {Ny};2,, be a strictly increasing sequence of integers and let ju be the measure
corresponding to the Verblunsky coefficients

{Uz ifn=N,
o, =

0  otherwise.

Let K, be the associated CD kernel. If {N¢}72, is sufficiently sparse (see the remark below)
then K, admits sine kernel asymptotics, namely

K, (e/0+5D pi6+He

e ) N em(a_g)sin(rr(a —_b))
K, (e, e'?) n—00 w(a —b)

3.1
uniformly for 0 € [0, 2m) and for a, b in compact subsets of the strip {|Imz| < %}.

Remark. By {N,};2, being sufficiently sparse we mean that for every £ € N there exists an
integer N(£) (which depends on Ny, ..., N, and on the sequence {vg};2,), such that Ny is
at least larger than N ().

That (3.1) implies clock behavior follows basically from (2.1) and is known as the Freud-
Levin—-Lubinsky Theorem in the OPRL setting [6,15,25]. The OPUC analog is presented below
in Theorem A.l. In addition, [26, Theorem 12.5.2] says that if {v,};°, converges to zero and
in addition

o0
lim =00 and Z|U@|2 = 00,
=0

then the measure described in Theorem 3.1 is purely singular continuous. Thus, Theorem 1.2
follows from this discussion and Theorem 3.1 above. Accordingly, the rest of this section and
Section 4 are devoted to proving Theorem 3.1.

The simplest measure on dD for which sine kernel asymptotics hold is the normalized
Lebesgue measure, which corresponds to the Verblunsky coefficients o, = 0. While this follows
of course from [14], it is also a direct computation that we present in Section 3.1. The bulk of
the proof lies in showing that for any {v,};2,, it is possible to choose the sequence N, in such
a way that the asymptotics of K, remain unchanged under a sparse decaying perturbation.

Below, u* = % denotes the normalized Lebesgue measure on the unit circle, © denotes the
perturbed measure appearing in Theorem 3.1, and u® denotes the finitely-perturbed measure
corresponding to the Verblunsky coefficients

v; n= Nj, ] <t
oy = .
0  otherwise.

Let KX, K,, K denote the CD kernels of u*, u, u® respectively, and let ¢, " denote
the normalized orthogonal polynomials of w, u'® respectively. Furthermore, to shorten the

formulation of (3.1), denote
z, = Ot ED

i(0+27b
w, = t5)

where 6 € [0,27) and a, b € {|[Imz| < 3}.
12
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We first prove a simple uniform bound on powers of z, and w,.

Lemma 3.2. For every two integers m < n,

Iz ], wy'| < e™.
Proof. By the monotonicity of the real exponent, together with —Ima < 5, we get

| = oimO+Z9)

Iz
2mm
= giTlma
<eé”.

The same can be shown for w, using the fact that —Imb < % ]

Moreover, (2.12) implies another useful inequality for every z € 9D (see [26, (1.5.27)]):
2Pn = PnPut1 + 0@,

U
|on
< -
|(pn| =1= |an| |(pn+1| 3.2)
1 4 fo|
= [Tl
1 — o]

3.1. Asymptotics of the CD kernel for the Lebesgue measure

The orthogonal polynomials of the normalized Lebesgue measure p“ are {zk},fio. Therefore

n—1 n—1 3
} : } : 2mika=b

K (Zn’ wn) = Z ,I; = o,
k=0 k=0

and similarly
n—1
L0 i6 ik6 7

K, e )=Ee ekt = p.

k=0

We now calculate the asymptotics of the kernel. Using the formula for the sum of a geometric
sequence

C n—1 _
Kn (2n, wn) _ lZeZnik%b

KE(e?, ei?) T n —

11— eZm’(afg)
S on| L omish

ein(a—E)(e—irr(a—E) _ ein(a—E))

psin(w(a — b))
— _—
n—00 7T(a — b)

m(a

13
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3.2. Asymptotics of the CD kernel for finitely-perturbed measures
In order to prove that the CD kernel of a finitely-perturbed measure u® has sine kernel

asymptotics, we show that it is asymptotically equivalent to the CD kernel of the Lebesgue
measure. Since the OPUC do not vanish on the unit circle 0D, we may write

KOG wy) KL wy) \%H(ei%\ -
KO, ei®y | © 2’ KO (eif eif) (3-3)
n ) n‘(pNngl(el )‘ n )
while also
© o] Z (ei?) ’
n‘gDNHl(e’e)‘ (pNz-H e
1 (3.4)

K(f) e’p, £if n— n—00
n ( ) Z w([)(ela)‘

because <p(£) = <p§f,)+l eventually (i.e. for every k > N, + 1). So by (3.3) and (3.4), it suffices
to prove that

Ky(le)(zm Wy) . Kf(zn» Wy) 0 (3.5)

© 0 2 Knﬁ(em,e"e) oo .
o)

Indeed,
(] ROYIEN
(zn) (wy) n—

KOGuw)  KfGow)| 1 kZJ” g —lekﬁ

9] io 2 K,f(em’eie) n (9] i0 2 e
n‘fﬂNH](e )‘ ‘goNH,(e )‘ k=0

1’“1 O W) —

n>n|”’

()
= Jeaen|
which we partition into two sums

N, n—1
1 S el n><p“>(wn> - 1
n

4
020 (w,) >(wn> v
©) i0 n _ i0 e
@N, (e) k=Ng+1 <pNZ+1(e)

N
s =

o) ()

Since for constant k, the term zk wk| converges as n — o0, it is in particular

(") i6
(e )
No+1
a bounded sequence in n. Therefore as for the finite sum,
N («
—i o Gewa)
¢
‘¢§V)+l (ezé))‘
To take care of the second sum, note that for every k > N, and every z € C

{4 k—Ng—1_ (£
o () =N el) @),

B
S

=
=]

n—oo

14
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o)
( ¢ —=—\—Ny—1_ () ©)
)(Zn)fp( )(wn) I | k k| ) (znwn) ™ (pNg-&-l(Z")(pNg-H(w") _
n"n| — 2
¢ ¢ ;
pomesl o)1)
We conclude, using Lemma 3.2, that
—1 1 —\—N,— 4 4
1S WM¢<w) 7 fzi:(hw)WW%H%WMJMJ_
=Nt O (it A k=Ng+1 © (gioy[’
=Ne On,+1(e ) =Ne+ @n,41(")

 _N,—1..( RO
(zawy) Ne 1@5\/2+1(Zn)§0§v2+1(wn)

2
[ .
o)

which converges, by continuity, to

TN (N ) . 0) .
(et9610)( Ne I)QONK+1(619)‘/)§VE+1(€[0) _

2
‘(pNZ'F (6’10)‘

as n — oo, thus proving (3.5).
4. Proof of Theorem 3.1
We begin by recursively constructing the Verblunsky coefficients of the fully-perturbed

measure. Assume that {N j}ﬁ‘:o are already chosen. We now pick an integer N (¢) large enough
so that the following conditions are met:

‘—K:f))((j,’; ':l”g)) pim(@=b) —“":T(Zl (E)B») < % for every n > N(¢), which can be guaranteed by
Sectio © o*

. ‘(DN‘“(Z") |¢N‘+'(w") |wNZ+l(Z_n) , }(DN‘ZH(W_VL) < 2 for every n > N(£), which can be
o1 @] oy 1 @] o) @] Jof) 1)
guaranteed by continuity, and the fact that on the unit circle ‘(pjf):l(em)‘ = “/’5\2 +1(eig)‘.

We are now free to pick N4 as long as it is larger than N (). Exactly in this sense we mean
that the sequence {N,};2,, in Theorem 3.1 should be sufficiently sparse. Our goal is now to
prove that the limit

K. (20, wa) _ ein(a—E)Sin(n(a — E))
K, (e &) 2@ —%)

n—00

holds uniformly for 6 € [0, 27) and for a, b in compact subsets of the strip {|Imz| < %}. We

claim that it suffices to show that

Ku(zn,wp) KOz, wy)

K, (ei?,ei?) KOt it
15

—50 “.1)

{— 00

ma
Nep1<n<Ngio
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uniformly for 6 € [0, 27) and for a, b in compact subsets of the strip {|Imz| < %}. Indeed, let
& > 0, and assume (4.1) holds. Then there exists L € N such that for every £ > L,
K, (2, wy) K,sz)(zn’ w,)

&
K, (e, i) K (el i) 2

< —.
2

max
Nep1<n=Neyo

We may assume that L > % otherwise we just increase L as needed. For every n > Ny, let
¢ be the integer such that Ny ; <n < Ny,. Now

Ki(@n, W) papsin(r(a —5))‘ _ | Kz wn) K,(Lf)(zn, Wy)
K, (ei?, ei?) w(a—Db) |~ |Ku(e?, e?) KO (it ¢if)
K,(,l)(zn’ wy) _ ein(a—E)Sin(n(a — E)) ‘
K’(l[)(eié)’ eif) w(a — b)
el
-2 ¢
<e.

So Theorem 3.1 follows from (4.1). Moreover, because Ny < n < Ny implies K, = KD,
(4.1) is equivalent to

K¥ (@ wa) K (20, )
Ky, o) K\ (e, ei?)
We shall now prove that (4.2) holds uniformly for 6 € [0, 27) and for a, b in compact subsets
of the strip {|Imz| < %}. Notice that

“4.2)

max
Net1<n=Ngyo £—o00

’KL@*”(Z,I,wn) KO, wa)
Ky, e?) Ky, i)

< ‘ K:;prl)(Zm wy) _ K,(,e)(znv wy)
= K:,[H)(Eig, €if) K,<,l+l)(€i9, i)
‘ KOG, we) Kz, wa)

KD, i) Ky (el ei?)
_ ‘ K0 wh) = KO (2, wa)
Ky (e, ei?)
’K(“(em em) _ K(£+l)(ei() &%)
n ’ n 9
KD, eit) '

‘ KOz, wy)
Kf,[')(e"", i)

So we can deal with each summand on its own.
4.1. First summand

For every Nyy; < n < N4z, we would like to estimate
K£[£+1)(Zn7 wy,) — K,gz)(Zn, wy)
K,(,”l)(eia, ei?)

and show that it converges to zero as { — oo.

Our approach offers a technical simplification to the one found in [2]. There, the analog
of A, ¢ was estimated using the CD formula. Since the CD formula only holds outside of the
diagonal (z # w when both are real), special care had to be taken for the denominator of A, ,,
as well as the numerator in the case a = b. To solve that, a subtle argument for analyticity
and Cauchy’s integral formula were used. We found that it is possible to estimate A, ; directly
without invoking the CD formula at all, thus slightly simplifying the argument. While we only
show it here for the OPUC case, our adjustments also work for the OPRL case of [2].

An,@ =

’

16
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Since <p(l) <pk D for every k < Ny, we find that

n—1 _
> (e e ) - >(zn>¢“><wn>)‘

k=Ngy1+1

Z o]

+1 £+1 4
> | e ) — 0 e )
k N[+1+]

e+1
Z o]
Let us focus on a single term in the numerator, denote

A = 0@ D wy) — 0o (wy)

for Ny11 < k < n < Ngyp. From the recursion relation (1.1) we derive the following at any
point z € C:

(£+1) k—Ngy1—1, (E+1)
o (@) = VT (2)

o+ T
= k= Newi= 1:ON/ngl (Z¢§\1z+1)(z) - Ueﬂ(p;\/zﬂ) (Z)> 4.3)

k=Ngy1—1

()
=z PN (Zcme(z) — ey, (z))

= 'O;lll_H ((pk )(Z) _ Zk*N1{+1 1U€+lg05vz+l(z)) .
Therefore,

o P wa) = pyl [ e w,)

k—N, (f)
- Uz+1<ﬂk (Zn)w o N/Z+l(w")

k—N, {4
- U€+1(pk (wn)Z e §V£)+l( n)

2 —\k—N, £ 0)*
e P e ol @l wn)].

Plugging this into A, ¢, we get

Aner = (2, = D ol @el )

k=Ngt1— ([) ( )
Zn

k—N,
AU R 7 S O

+ oa el ([e @l ™ o)

4 4
(so}v@(zn)w}v;“(wn) .

)

k=Neji-1

+ o2 et P 2wl
Since the polynomial sequence (pﬁ.f) is affected by the perturbation only up to j = Ny + 1,
afterwards we have the “free” recursion formulas
J=Ne+1
U
0\ (2) = /7N 1@\2“(1),

£)* 14
o @) = o)1 ).
17
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We can use these formulas to regress all the ¢‘“’s back to the last perturbed index N, + 1.
Applying Lemma 3.2, we see that

(&)

Anex < oy, — e

4
905\724.1 (Zn)goNl-H (wy)| +

)

— T 0)*
+,0N(/2+||U(+||€ ( )QDNH](wn)(P;v{)H(Zn)

+pNHl|UL’+1| e ‘¢N€+](Zn)(pN[+l(wll) .

Now we may use Condition 2 from the beginning of Section 4, so we write

. 2
An Lk = =< BZ+1 ‘QDNhLl(ele)‘
where
Bear = (4032, = D+ 802, loest| + 4052, ves )

Note that B, is independent of n, k, a, b, 6, and converges to zero as £ — oo. By (3.2), we
conclude

1+ |ve]? 41
Aptk < Bopy———— ) (b

i
A
1_|v€+1| £+1

Finally, we plug A, ¢ back into A,l ¢

2
(£+1) i0
1+ [vgq]* k= N “pN“““(el )‘
0+1 z+1+
Anp < Be+11 | 2
— Vg1 41
Z o]
14 |vgs)?
< B il

1 — |vg1|* t=o0
4.2. Second summand

%@lﬁ’% is bounded by the
asymptotics of the finite perturbatlon (Condition 1 from the begmmng of Section 4). Namely,

0
Ky (zn,wn) tyr(a b) sin(w(a— b)) 1
’—K(z) (% <% @D ’ + e' We are finally left with the last part

The second summand is comprised of two parts. Clearly, )

Kr(ze)(ele’ ei(?) _ Kr(LZ+1)(ei0’ ei9)
Kr(f'*‘l)(eie’ eif)
for Nyy+1 < n < N4, and we want to show that it converges to zero as £ — oo. That will

conclude our proof. But this is a special case of the first summand (Section 4.1), in which
a = b = 0. We are done.

Appendix
We prove here the following

Theorem A.l. Let i be a measure on 0D exhibiting sine kernel asymptotics in the sense
of (3.1), uniformly for 0 € [0, 2m) and for a, b in compact subsets of the strip {|Imz| < %}.

18
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Let {H,},2, be any corresponding sequence of paraorthogonal polynomials. Then for any
'® ¢ 9D and any j € 7,

n (9}21(@) — 9}”(@)) — o

Proof. Since O is fixed in the proof, we omit it from the notation 9;")(@) throughout. Define
a sequence of functions

Oy i

Kn(g 4 " ’ [ )
X) =
fn( ) K (e gjn) e(n)
By the sine kernel asymptotics, f, converges to
sin(mwx)
x) = el?T.x
f(x) R

uniformly on compact subsets of the strip {|Imx| < %}.

Leta, = (9;'21 - 9(")> be the sequence which we want to show converges to 1. Suppose,

for the sake of contradiction, that

liminf a, < 1,
n—0o0

so there exists a subsequence {a,, };2, that converges to 0 < L < 1. By the uniform
convergence of f, and the continuity of f, we conclude that

fnk (ank) ]H_O)O f(L)

But
(ng) (ng)
(E 8]+l et&j )
Je (a”k) = TR =0

K, @)
while f(L) # 0 because L is not a nonzero integer, which is a contradiction. Therefore,

liminf a, > 1.
n— o0

On the other hand, note that f(1) = 0. Due to Hurowitz’s theorem, there is a sequence {x,}5
such that x, is a zero of f,, and x, —> 1. But all the zeros of f, are of the form " (9(”) 0('”)
for some m # j, and thus a, is th: gfnallest positive zero of f,. It follows that for all large
enough n,

a, <x, — 1

n—oQ
)

limsup a, < 1.
n—o0

We have found that lim @, = 1, which means that

n— 00

j+1 J

(9“’) —9“”) — om0
n—oo
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