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We introduce a function of the density of states for periodic Jacobi matrices on trees
and prove a useful formula for it in terms of entries of the resolvent of the matrix
and its “half-tree” restrictions. This formula is closely related to the one-dimensional
Thouless formula and associates a natural phase with points in the bands. This allows
streamlined proofs of the gap labeling and Aomoto index theorems.We give a complete
proof of gap labeling and sketch the proof of the Aomoto index theorem.We also prove
a version of this formula for the Anderson model on trees.

Jacobi matrices | trees | spectral theory

1. Introduction
Graph Jacobi matrices provide a unified framework for dealing with graph adjacency
matrices, weighted Laplacians, and Schrödinger operators. Their spectral theory therefore
has connections with various fields, among those are mathematical physics, analysis,
probability, and number theory. This note deals with periodic Jacobi matrices on trees,
which arise through viewing the tree as the universal cover of a finite graph. Such
operators have attracted a considerable amount of interest recently (1–15). The purpose
of this note is to announce and give an interim report on the use of a formula which, in
particular, provides a short proof of Sunada’s gap labeling result (14), without the use of
C∗ algebras.

We start with a connected, finite graph, G, which can have self-loops and multiple
edges between a pair of vertices but which, for simplicity of exposition, we suppose is
leafless. We use V (G) for the vertex set of G and E(G) (sometimes just V and E) for the
set of edges. We pick an orientation for each edge, e, using ě for the oppositely directed
edge. �(e) is the initial vertex and �(e) the final of the directed edge e, so for example,
�(ě) = �(e). We let Ẽ denote the set of all edges with arbitrary assigned orientation so
that #(Ẽ) = 2#(E). We assign a potential, b(v) ∈ R, to each vertex and coupling,
a(e) = a(ě) > 0, to each edge, calling these the Jacobi parameters of G.

Let T be the universal cover of G—it is always an infinite tree, and let � : T → G
be the covering map. We can lift the Jacobi parameters of G to T by setting b(ṽ) =
b(�(ṽ)); a(ẽ) = a(�(ẽ)). One defines an infinite matrix, H , indexed by V (T ) by

Hṽw̃ =

 b(ṽ), if ṽ = w̃
a(ẽ), if (ṽw̃) = ẽ an edge in Ẽ(T )
0, otherwise

[1]

and a corresponding bounded self-adjoint operator, H , onH = `2(V (T )). One defines
the period , p, to be #(V (G)). If G is a single cycle, then T is Z and the Jacobi parameters
are periodic in the naive sense. This classical subject (of 1D periodic Jacobi matrices) has
been extensively studied; see for example, Simon (16, Chaps. 5, 6, 8).

Deck transformations induce unitary maps on H which commute with H . In
particular, for every v ∈ V (G), the spectral measure, d�ṽ, and Green’s function,
〈�ṽ, (H − z)−1�ṽ〉, are the same for all ṽ ∈ V (T ) with �(ṽ) = v. We use d�v and
Gv(z) for these common values. It is a basic fact that in one form goes back at least to
ref. 17 (see also refs. 11 and 18) that each Gv(z) defined for z ∈ C+ is an algebraic
function which can be continued across the real axis with finitely many points removed
(this implies, see ref. 4, Theorem 6.7, that the spectrum of H has no singular continuous
part and the densities of the a.c. part of the spectral measures are real analytic in the
interior of the spectrum except for possible algebraic singularities).

One defines the density of states measure, dk(E) (and integrated density of states, aka
IDS, k(E) = dk((−∞, E))), by

dk =
1
p

∑
v∈V

d�v [2]
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Remark For Jacobi matrices on Z� , the analog is the limiting
empirical spectral distribution of the Jacobi matrices associated
with larger and larger boxes (with, say, free boundary conditions);
because truncated trees have so many boundary points, the same
is not true for trees with general boundary conditions (BC)
although one can carefully choose periodic BC so that it is (3).

The support of the measure dk is the spectrum of H and by the
definition of spectral measures, one has that∫

1
�− z

dk(�) =
1
p

∑
v∈V

Gv(z) [3]

One of the fundamental results of the theory is as follows:

Theorem 1. [Sunada (14)] In any gap of the spectrum of H, the
IDS is an integral multiple of 1/p. In particular, the spectrum has
at most p connected components.

Sunada’s proof, while elegant, is involved since it uses some
deep results of Pimsner–Voiculescu (19) from the K -theory of
C∗-algebras. One of our main results is a short proof of Sunada’s
theorem that, in particular, makes no use of C∗-algebras.

Another fundamental result is the Aomoto index theorem. In
the 1D case, H does not have any point spectrum but in other
cases that is not true—see, for example, Avni et al. (4, Example
7.2) or the extensive study in Banks et al. (5). In that case, given
an eigenvalue, �, define X1(�) to be the set of vertices, v ∈ V ,
so that for some ṽ with �(ṽ) = v there is some eigenfunction
 associated to �, with  (ṽ) 6= 0. Define ∂X1(�) to be those
v ∈ V not in X1(�) but neighbors of points in X1(�), and we let
E(�) be the set of edges with both endpoints in X1(�).

Theorem 2. [Aomoto Index Theorem (2)] The measure dk has a
mass at an eigenvalue, �, of weight I(�)/p where

I(�) = #(X1(�))−#(∂X1(�))−#(E(�)) [4]

A second proof of this theorem can be found in Banks et al. (5).
Both earlier proofs involve detailed combinatorial analyses. The
second of our results here is a different proof of the Aomoto index
theorem that some may find simpler but that, in any event, is
very illuminating.

Our approach concerns a basic function which we will call the
Floquet function defined in C+ by

Φ(z) = exp
(

p
∫

log(t − z) dk(t)
)

[5]

which clearly has an analytic continuation to a neighborhood of
C+ ∪ (R \ spec(H)). In the 1D case, under the normalization∏p

j=1 aj = 1, the Thouless formula (16, Theorem 5.4.12) implies
that if uj(z) is a Floquet solution (i.e., solution of the difference
equation

ajuj+1 + bjuj + aj−1uj−1 = zuj [6]

with uj+p = Auj for a constant A), then (16, Theorem 5.4.15)
(−1)pA = Φ(z) or Φ(z)−1 which is why we give Φ this name.
There is another approach to 1D periodic Jacobi matrices that
extends the celebrated work of Marchenko–Ostrovskii (20) from
the case of Hill’s ODE (a pedagogical discussion of the 1D
periodic Jacobi matrix Marchenko–Ostrovskii theory can be
found in Lukic [21, esp. (10.47) and (10.48)]. The Marchenko–
Ostrovskii conformal map is (up to a factor of i and unimportant

constant), the logarithmic integral appearing in (1.5). So our
Floquet function can also be viewed as an extension of the
Marchenko–Ostrovskii conformal map from cyclic graphs to
general finite graphs.

Because of Eq. 3 we have that

d
dz

log(Φ(z)) = −
∑
v∈V

Gv(z) [7]

In Section 2, we will prove an explicit formula for the Floquet
function in terms of Green’s functions and m-functions (objects
whose definition we recall there). In Section 3, we will use this
Floquet formula to prove the Sunada gap labeling theorem and in
Section 4, we will sketch our proof of the Aomoto index theorem
(in the case where the eigenvalue is isolated from the continuous
spectrum; see the discussion there). In Section 5, we will discuss a
version of the Floquet formula for the Anderson model on trees.
Since, as we will explain, one can regard the Floquet formula
as half a Thouless formula, we hope to find some interesting
applications of that result.

2. The Floquet Formula
We will prove a useful formula for the Floquet function. To do
so, we need to recall what the m-functions are and the relations
between the Green’s and m-functions. Given e ∈ E , pick ẽ ∈
E(T ) with �(ẽ) = e. Removing ẽ from T breaks that graph into
two pieces, T +

ẽ with �(ẽ) and T −ẽ with �(ẽ). We let H±ẽ be the
operators on `2(V (T ±ẽ )) with the restricted Jacobi parameters
and set

me(z) = 〈��(ẽ), (H
+
ẽ − z)−1��(ẽ)〉 [8]

The use of deck transformations shows this depends only on e
and not the choice of ẽ over e.

The use of the method of Schur complements (see ref. 4,
Section 6 for a proof; the formulae appear at least as early as
ref. 22, Proposition 2.1) shows that

1
Gu(z)

= −z + bu −
∑

f ∈Ẽ: �(f )=u

a2
f mf (z) [9]

1
mf (z)

= −z + bu −
∑

f ′∈Ẽ ,f ′ 6=f̌
�(f ′)=�(f )

a2
f ′mf ′(z) [10]

which implies for any e ∈ Ẽ that

G�(e) =
1

m−1
ě − a2

e me
=

mě

1− a2
e memě

[11]

Define

Qe(z) =
1

1− a2
e me(z)mě(z)

=
G�(e)(z)

mě(z)
=

G�(e)(z)
me(z)

[12]

We are heading toward the proof of a lovely formula we call
the Floquet formula:

Theorem 3. [Floquet Formula] We have that

Φ(z) =

∏
e∈E(G) Qe(z)∏
u∈V (G) Gu(z)

[13]

initially for z ∈ C+, but the right side defines a meromorphic
continuation to (C \ spec(H)) ∪ (isolated point spectrum of H).
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Remark Using Eq. 12, this can also be written

Φ(z) =

∏
e∈E(G) G�(e)(z)∏

u∈V (G) Gu(z)
∏

e∈E(G) me(z)
[14]

In particular, this implies that Φ is an algebraic function.

We sketch our proof of this result. Let Ψ be the right side of
Eq. 13. It is easy to see that as x → ∞ in R, that Φ(−x) =
xp + O(xp−1) and Ψ(−x) = xp + O(xp−1) so to prove Eq. 13,
it suffices to prove that for z ∈ C+

log(Ψ)′(z) = log(Φ)′(z) [15]

where ·′ = d ·
dz .

To compute log(Ψ)′(z), we note that, by Eq. 9, we have that

(log(Gu))′ = −
(

log
(

1
Gu

))′
= −Gu

(
1

Gu

)′
= Gu +

∑
e∈Ẽ: �(e)=u

a2
e m′eGu [16]

and that by, Eq. 12,

(log(Qe))′ = (a2
e m′emě + a2

e mem′ě)Qe

= a2
e G�(e)m

′
e + a2

e G�(e)m
′

ě [17]

Therefore∑
e∈E

(log(Qe))′ =
∑
e∈Ẽ

a2
e G�(e)m

′
e

=
∑
u∈V

∑
e∈Ẽ: �(e)=u

a2
e m′eGu

=
∑
u∈V

(−Gu + (log(Gu))′) [18]

which, by Eq. 7, proves Eq. 15 and so Theorem 3.

3. Gap Labeling
In this section, we present our proof of Sunada’s Gap Labeling
theorem, Theorem 1. Basically, it is an immediate consequence of
the Floquet formula Eq. 13. We need some care in determining
the branch of log used Eq. 5. We pick the branch where when
z ∈ C+ is taken near −∞ on the real axis, Φ has an argument
near 0. That is, we are using the branch where when z = −x
(x near +∞) and t in a bounded interval, we have that log(t −
z) > 0 and we are then continuing z through the upper plane.
Thus, if E0 is a real point in the resolvent set of H , the integral
defining Φ, Eq. 5, can be analytically continued from C+ to a
neighborhood of E0 and for s = t − E0 6= 0 real, we have that

Im(log(s)) =
{

0, if s > 0
−�, if s < 0 [19]

Moreover, the Floquet formula can be analytically continued to
a set including E0. Thus

Im
(

p
∫

log(t − E0) dk(t)
)

= −p�k(E0) [20]

That means that pk(E0) ∈ Z ⇐⇒ Φ(E0) is real.
But for x ∈ R \ spec(H), each Gv(x) and me(x) is analytic

(meromorphic for m), we see that except for potential isolated
poles (actually, it is easy to see that Φ has no poles), Φ is real in
gaps!

4. Aomoto Index Theorem
In this section, we will sketch (with full details in a later
publication) a proof of the Aomoto Index Theorem (Theorem
2) at least in the case where the eigenvalue is an isolated point of
the spectrum (we hope in the later publication to deal with the
general case; we will explain the potential difficulty soon—see
point (1) below; the next paragraph also uses that the eigenvalue
is isolated). We note that the earlier proofs of this theorem (2, 5)
handle the general case and that Banks et al. (5) provide examples
where there are nonisolated eigenvalues and also where there are
isolated eigenvalues.

The Floquet function is involved with the question of the
weight of an eigenvalue because, by the discussion in the last
section, � is an isolated eigenvalue with dk-weight I/p if and
only if the argument of Φ(x) jumps by I� as x passes through �.
For isolated eigenvalues, by the Sunada Theorem, I is an integer
so this happens if and only if Φ has a zero of order I at �.

The punch line is that Eq. 4 will come from the Floquet
formula, Eq. 13, and the fact that Gv(z) has a simple pole at
z = � if and only if v ∈ X1(�), it has a simple zero when
v ∈ ∂X1(�) and Qe(z) has a simple pole at z = � if and only if
e ∈ E(�). There can be some additional zeros of Gv and Qe but
we will see that they cancel.

We will use X0(�) = V \ (X1(�) ∪ ∂X1(�)). Henceforth,
without loss, we can suppose that � = 0 for simplicity of notation
and we drop (�) from X0,1(�).

The proof relies on a sequence of observations:

(1) If 0 is an isolated point in the spectrum then all Green’s
and m-functions are meromorphic in a neighborhood of 0.
If they have poles they are simple with negative residue and
if they are zero, the zeros are simple with positive derivative
(this follows from the fact that by the spectral theorem, the
derivative of Green’s and m-functions away from poles are
strictly positive). Thus in counting the order of a zero in
Eq. 14, each G or m contributes either a single +1,−1, or 0.
(For nonisolated zeros, the functions are only algebraic and
so have Laurent–Puiseux series—one needs to track potential
fractional powers; this is why we have limited our discussion
here to isolated points of the spectrum).

(2) If v ∈ X1, Gv has a simple pole at 0 and for other v’s either a
zero or a nonzero finite value at 0.

(3) A direct analysis of the possibilities proves that if e = (vw)
with both points in X1, then me has a finite nonzero value at
0 so, by Eq. 12, Qe has a simple pole.

(4) A direct analysis of the possibilities proves that if e = (vw)
with v ∈ X1, w ∈ ∂X1, then me(0) = 0 and mě has a pole
at 0 so Qe has a finite, nonzero value at 0 (since memě has a
negative value at 0 so the denominator in the first equality in
Eq. 12 is nonvarnishing) and Gw(0) = 0.

(5) A direct analysis of the possibilities proves that if e = (vw)
with both points not in X1, then Qe does not have a pole at
0 so by (3) and (4), Qe has a pole at zero if and only if both
endpoints lie in X1.

(6) The final equalities in Eq. 12 show that if e = (vw) and
Qe(0) = 0, then neither v nor w can lie in X1. It also shows
that if me has a pole at 0, and neither v nor w lies in X1, then
Qe(0) = 0. It follows that for such e’s, Qe has a double 0 at
0 if both me and mě have poles there (by the first equality in

PNAS 2024 Vol. 121 No. 23 e2315218121 https://doi.org/10.1073/pnas.2315218121 3 of 4
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Eq. 12), and Qe has a simple pole at 0 if exactly one of them
has a pole. Thus for such e’s, we can count poles of me rather
than zeros of Qe so long as we run e through all of Ẽ .

(7) It follows from Eq. 9, that if Gu(0) = 0, then at least one mf
with u = �(f ) has a pole, and because poles all have negative
residues, the converse is true. A careful analysis shows that
if mf with �(f ) = u has a pole, then for any e 6= f with
�(e) = u and with �(e) /∈ X1, one can conclude that me is
not infinite. This means if that there is a 1−1 correspondence
between v ∈ X0 with Gv(0) = 0 and those e with me having a
pole with �(e) ∈ X0. By the argument in (5), it also says that
if �(e) ∈ ∂X1, �(e) /∈ X1, then me does not have a pole. These
two conclusions show that the number of zeros of the Gu(z)
with u ∈ X0 exactly cancels the number of zeros of Qe(z), for
those e with no ends in X1.

In summary, Theorem 3 allows us to compute the multiplicity
of the zero of the Floquet function at any given point by
counting the multiplicities of the zeroes and poles of the Gv and
Qe (keeping in mind that the Qe are in the numerator and the
Gv in the denominator). Specifically, point (2) shows that for
each v ∈ X1(�) the Gv(z) has a simple pole at z = �, which is
responsible for the #(X1(�)) in Aomoto’s index formula. Point
(3) shows that Qe(z) has a simple pole at z = � for all e ∈ E(�),
which yields the −#(E(�)) in the index formula. And, point
(4) shows that Gv(z) has a zero for all v ∈ ∂X1(�), yielding the
−#(∂X1(�)) in the index formula. The other points argue that
the other terms in the Floquet formula either do not contribute
with a pole or a zero, or their contributions cancel out with each
other.

We remark that the earlier proofs of Aomoto’s theorem (2, 5)
show that X1 is a forest (disjoint union of trees) which allows
one to prove that the index is also equal to ccX1(�)−#(∂X1(�))
where ccX1(�) is the number of connected components of X1(�).
So long as we use the formula Eq. 4, we do not need to prove the
forest result.

5. Anderson Model on a Tree
In this final section, we will note that the ideas of Section 2 also
imply results for the Anderson model on a tree, a subject with
considerable work in both the physics (23–25) and mathematical
physics (22, 26–29) literatures. One fixes a strictly positive
integer, d , and considers a Jacobi matrix on the homogeneous
tree of degree d . The a’s and b’s are both given by independent
identically distributed (separately for a and b) random variables
(for technical simplicity, we suppose the supports of the distribu-
tions are bounded). Most commonly the distributions of the a’s
set them to be identically one but that does not affect anything
in our arguments.

For us, as for Klein (22), the density of states is given by the
expectation of the spectral measure over the ensemble of random
Hamiltonians. By taking expectations of Eqs. 7 and 18, we prove
that∫

log(t − z) dk(t) =
(

d
2 − 1

)
E(log(Gu))− d

2 E(log(me))

[21]
In case d = 2 this is what follows from the Thouless formula
and (30, 1.7) so this is sort of a half-Thouless formula. We are
currently studying possible applications of Eq. 21.

Data, Materials, and Software Availability. There are no data underlying
this work.
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